ハビタブル惑星ミニワークショップ (2009-08-18, 国立天文台, 三鷹市)

金星大気放射伝達モデルの開発: Influence of CO₂ line profiles on the equilibrium temperatures

M. Takagi¹, K. Suzuki², H. Sagawa³, P. Baron⁴, J. Mendrok⁴, Y. Kasai⁴, Y. Matsuda²
1. Univ. of Tokyo, 2. Tokyo Gakugei Univ., 3. Max Planck Institute, 4. NICT

Objectives

- Improvement of the dynamical model of the Venus atmosphere requires a an infrared radiative transfer model applicable to the Venus lower atmosphere.
 - The radiative process is extremely simplified by the Newtonian cooling in the present Venus GCMs.
 - However, this simplification cannot be justfied since the Venus atmosphere is optically quite thick (92 atm CO₂).
- In order to determine a reasonable CO₂ line profile, temperature distributions in the radiative and radiativeconvective equilibrium are calculated for the following CO₂ line profiles:
 - Voigt (Lorentz) profile
 - Pollack et al. (1993)
 - Tonkov et al. (1996)
 - Fukabori et al. (1986)
 - Meadows and Crisp (1996)

Absorption line profile

- CO₂
 - Voigt (Lorentz) profile near line center (Goody and Yung, 1989)
 - Sub-Lorentz profile in wing regions (Burch et al., 1969)
 - Depends on temperature and absorption bands.
 - Not uniquely determined.
 - Continuum absorption due to CO₂-CO₂ collisions cannot be neglected in the Venus lower atmosphere (Moskalenko et al., 1979)
- H₂O
 - Super-Lorentz profile (Goody and Yung, 1989)
 - However, the profile of H_2O is assumed to be Lorentzian in the present study in order to focus on the influence of the CO_2 line profiles on the equilibrium temperature distributions.

CO₂ line profiles

(92 atm, 730 K)

Absorption coefficients due to CO₂

Model

- Based on the correlated *k*-distribution method.
 - Wavenumber region: 0-6000 cm⁻¹ (30 channels)
 - CO_2 , H_2O , and H_2SO_4 cloud are taken into account.
 - Absorption coefficient is calcluated by the line-by-line method with data provided by HITEMP and HITRAN 2004.
- Vertical region
 - 0-80 km, divided into 50 layers.
- Solar heating
 - The solar heating profile is fixed to the distribution of the absorbed solar energy averaged over the sphere (Tomasko et al., 1980).
- Convection
 - The heat transport by free convection is represented by the vertical eddy diffusion which is based on the mixing length theory.
- Time integration
 - From a constant temperature profile (300 K).

Conditions

- Case 1: Absorption due to CO₂ only.
- Case 2: Case 1 + pressure induced absorption caused by CO₂ pairs.
- Case 3: Case 2 + absorption due to H_2O
- Case 4: Case 3 + cloud (k*p const.)
 - Samuelson et al. (1975)
 - Matsuda and Matsuno (1978)
- Case 5: Case 3 + cloud (k const.)
- Total opacity of the cloud is fixed to 10.

Voigt, w/o cut-off, no convection

Equil. temperatures Voigt (Lorentz) w/o line cut-off

Voigt, w/o cut-off, with convection

Pollack et al (1993), cut-off 120, no convection

Equil. temperatures Pollack et al. (1993) 120 cm⁻¹ cut-off

Pollack et al (1993), cut-off 120, with convection

Pollack et al (1993), cut-off 120, with convection

Tonkov et al (1996), w/o cut-off, no convection

Tonkov et al (1996), w/o cut-off, with convection

Equil. temperatures Tonkov et al. (1996) w/o line cut-off

Tonkov et al (1996), w/o cut-off, with convection

Fukabori et al (1983), w/o cut-off, no convection

Equil. temperatures Fukabori et al. (1983) w/o line cut-off

Fukabori et al (1983), w/o cut-off, with convection

Fukabori et al (1983), w/o cut-off, with convection

Meadows and Crisp (1996), w/o cut-off, no convection

Meadows and Crisp (1996), w/o cut-off, with convection

Equil. temperatures Meadows & Crisp (1996) w/o line cut-off

Meadows and Crisp (1996), w/o cut-off, with convection

Summary

- Temperature distributions close to the observed one can be obtained by the CO₂ line profiles of Fukabori et al. (1983) and Meadows and Crisp (1996).
- A realistic radiative transfer model may be constructed by using an intermediate CO₂ line profile between Fukabori and Meadows profiles.
- Radiative equil. temperatures are:
 - Super-adiabatic from the surface to 10-80 km altitudes (depends on the assumed CO₂ line profiles).
 - Considerably higher than the observation (820-1300 K at the surface).
- Rad.-Conv. equil. temperatures are:
 - Convective from the surface to 30-50 km altitudes for the Fukabori and Meadows profiles.
 - Strongly affected by the temperature at the bottom of the cloud layer (in contrast to those in the rad. equil.).