Magnetic Rossby waves in the Earth’s core

Kumiko Hori1,2, Chris Jones1, Rob Teed3, Steve Tobias1

1) Department of Applied Mathematics, University of Leeds.
2) Graduate School of System Informatics, Kobe University, Japan.
3) School of Mathematics and Statistics, University of Glasgow.
Waves in the Earth’s fluid core

Waves provide us with information about the ‘invisible’ system

• **torsional Alfven waves** (e.g. Braginsky 1967, Zatman & Bloxham 1997)
 – axisymmetric, travelling in radius \(r \)
 – \(\sim 6 \) yrs traveltime: \(B_s > \sim 2 \) mT (Gillet et al. 2010, 2015)

• **axisymmetric MAC oscillations** (e.g. Braginsky 1993)
 – in a thin, stably stratified layer at the top of the core?
 – \(\sim 60 \) yrs geomagnetic variation: \(H \sim 140 \) km? (Buffett 2014)

• **slow magnetic Rossby waves** (e.g. Hide 1966, Acheson 1978)
 – nonaxisymmetric, travelling in azimuth \(\phi \)
 – \(\sim 300 \) yrs westward drift: \(B\phi \sim 10 \) mT? (Hori et al. 2015)

• **(fast magnetic) Rossby waves in a thin stable layer** (e.g. Braginsky 1984)
 – \(\sim 6 \) yrs westward drift? (Chulliat et al. 2015)
 – in the solar tachocline also?: \(\sim 2 \) yrs westward? (McIntosh et al. 2017)
An axisymmetric mode: torsional Alfven waves

- A special class of Alfven waves (Braginsky 1970; also Roberts & Aurnou 2012)
 - the azimuthal momentum eq on cylindrical surfaces in the magnetostrophic balance gives a steady state (Taylor 1963)
 - cylindrical perturbations on the state

\[
\frac{\partial^2 \langle u'_\phi \rangle}{\partial t^2} = \frac{1}{s^3 h(\bar{\rho})} \frac{\partial}{\partial s} \left(s^3 h(\bar{\rho}) U_A^2 \frac{\partial}{\partial s} \langle u'_\phi \rangle \right)
\]

» travel in radius s with the the z-mean Alfven speed \(U_A = \langle B_s^2 \rangle / \langle \rho \rangle \mu_0 \)^{1/2}
An axisymmetric mode: torsional Alfvén waves

- A special class of Alfvén waves (Braginsky 1970; also Roberts & Aurnou 2012):
 - the azimuthal momentum eq on cylindrical surfaces in the magnetostrophic balance gives a steady state (Taylor 1963)
 - cylindrical perturbations on the state
 \[
 \frac{\partial^2 \langle u_\phi' \rangle}{\partial t^2} = \frac{1}{s^3 h(\bar{\rho})} \frac{\partial}{\partial s} \left(s^3 h(\bar{\rho}) U_A^2 \frac{\partial \langle u_\phi' \rangle}{\partial s} \right)
 \]
 \[
 \rightarrow \text{travel in radius s with the the z-mean Alfvén speed } U_A = \langle B_s^2 \rangle / \langle \rho \mu_0 \rangle^{1/2}
 \]

- Data:
 - probably responsible for 6-7 year variations
 \[
 \rightarrow \text{can account for the 6 year LOD change}
 \]
 - the observed wave speed is used to infer the field strength within the core
 \[
 \rightarrow \langle B_s^2 \rangle^{1/2} \geq 2 \text{ mT}
 \]
 \[
 \rightarrow \text{better fits with the scaling law}
 \]

(Gillet et al. 2010)
Nonaxisymmetric waves in the core?

- Possibly related to the geomagnetic westward drift
 - the nonaxisymmetric part of the field moving in azimuth
 - significant in the Atlantic hemisphere: period ~ 3×10^2 yrs
 - probably a mixture of flow advection (Bullard+ 1950) and wave propagation (Hide 1966)
 - How can we separate the signal due to waves?

Nonaxisymmetric part of Br at the surface of the core at the equator / 40° S (gufm1: Finlay & Jackson 2003)
Magnetic Rossby waves

• **Key ingredients** (Hide 1966; Acheson 1978; also Hori et al. 2015):

 – axial vorticity equation in a quasi-magnetostrophic balance (\(\Lambda=O(1)\); Ro, E<<1)

 \[
 \rho \frac{\partial \zeta'}{\partial t} - 2\rho \Omega \frac{\partial u_z'}{\partial z} = \hat{e}_z \cdot \nabla \times (j' \times \vec{B})
 \]

 coupled with the induction equation

 \[
 \frac{\partial b'}{\partial t} = \vec{B} \cdot \nabla u'
 \]

 – spherical geometry (topographic \(\beta\)–effect)

 – almost independent of \(z\) (quasi-geostrophic)

 – azimuthal length scales shorter than radial ones

• **Dispersion relations about a mean flow:**

 with a form of \(e^{i(m\phi - \omega t)}\)

 \[
 \hat{\omega} = \hat{\omega}_R \left[\frac{1}{2} \pm \frac{1}{2} \sqrt{1 + \frac{\hat{\omega}_M^2}{\hat{\omega}_R^2}} \right]
 \]

 where Rossby and Alfven frequencies

 \[
 \hat{\omega}_R = \frac{2\Omega s^2}{(r_o^2 - s^2)m} \quad \hat{\omega}_M^2 = \frac{m^2 \langle B^2 \rangle}{\rho \mu_0 s^2}
 \]

 a QG eigenfunction for \(B_\phi = B_0 \sin \phi\)

 in a meridional section

 (after Malkus 1967)
Magnetic Rossby waves (cont’d)

- **Fast modes:**
 - $\omega \to + \omega_R (1 + \omega_M^2 / \omega_R^2)$ in the limit $\omega_M^2 / \omega_R^2 \ll 1$
 - essentially (nonmag) Rossby waves (Busse 1986)
 - travelling progradely (eastward) with timescales of O(months) in the fluid core

- **Slow modes:**
 - $\omega \to - \omega_M^2 / \omega_R$ in the limit $\omega_M^2 / \omega_R^2 \ll 1$
 \[\hat{\omega}_{MR} = - \frac{\hat{\omega}_M^2}{\hat{\omega}_R} = - \frac{m^3 r_0^2 - s^2 B_\phi^2}{2 \rho \mu_0 \Omega_s^4} \]
 - travelling retrogradely (westward) along the toroidal field B_ϕ on timescales of $O(10^2 \text{ years})$
 - cf. torsional Alfven waves along B_s
 - highly dispersive
 - the governing equations (Cartesian)
 \[\frac{\partial j_z'}{\partial t} = \frac{B_{0z}}{\mu_0} \frac{\partial \xi_z'}{\partial x} \]
 \[- \frac{4 \rho \Omega \chi}{L} u_y' = \frac{B_{0x}}{\mu_0} \frac{\partial j_z'}{\partial x} \]

(Hori, Takehiro & Shimizu, 2014)
Waves hint at strong-field dynamos?

- **Linear, rotating magnetoconvection**
 (e.g. Chandrasekahr 1961, Fearn 1979; also Zhang & Schubert 2000):
 - as magnetic field is strengthened to $\Lambda = O(1)$, the thermal stability Ra_{crit}, the preferred wavenumber k_{crit}, and wave frequency ω_{crit} drop
 - dynamos hypothesized in the regime: ‘strong-field’ dynamos (e.g. Roberts 1978)
 - Note: all three effects not necessarily depend on the background magnetic field, boundary conditions, etc.

![Diagram showing the relationship between magnetic field strength and Rayleigh number](image)

- Field strength B^2 or Λ
- Flow vigor U or Rm
- Rayleigh number Ra
- Ra_{d} and Ra_{d}^{mag}
- Ra_{c} and Ra_{c}^{mag}
- Rm_{d} and Rm_{d}^{mag}
- Strong field dynamo
- Weak field dynamo

$Ra_{d}^{mag} = O(E^{-4/3})$

$Ra_{c}^{mag} = O(E^{-1})$

$\Lambda = O(1)$

$\Lambda = O(E)$
Waves hint at strong-field dynamos?

- **Linear, rotating magnetoconvection** (e.g. Chandrasekahr 1961, Fearn 1979; also Zhang & Schubert 2000):
 - as magnetic field is strengthened to $\Lambda = O(1)$, the thermal stability Ra_{crit}, the preferred wavenumber k_{crit}, and wave frequency ω_{crit} drop
 - dynamos hypothesized in the regime: **‘strong-field’ dynamos** (e.g. Roberts 1978)
 - Note: all three effects not necessarily depend on the background magnetic field, boundary conditions, etc.

- **Convection-driven spherical dynamos** likely approaching the regime (e.g. Yadav et al. 2016; Dormy 2016)
 - force balances
 - **flow properties?** (vigor/heat transfer/subcriticality, azimuthal length scales, and wave time scales)
 - cf. plane layer models

Radial velocity in the equatorial plane at $E = 10^{-6}$, $Ra/Ra_c = 10$, $Pm/Pr = 0.5$ (Yadav et al. 2016)
Convection-driven, spherical dynamo simulations

- **Greatly studied for the past decades** (e.g. Glatzmaier & Roberts 1995; Kageyama & Sato 1995; also reviews by Christensen & Wicht 2007; Jones 2011)
 - successful for reproducing observed features of planetary magnetic fields
 - a tool for understanding the dynamics with self-generated magnetic fields

- **MHD dynamos driven by Boussinesq convection in rotating spherical shells:**
 - Governing equations (dimensionless)
 \[
 \begin{align*}
 \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} &= \frac{Pm}{E} [2\hat{e}_z \times \mathbf{u} - \nabla p + (\nabla \times \mathbf{B}) \times \mathbf{B}] + \frac{Pm^2 Ra}{Pr} T \hat{e}_r + Pm \nabla^2 \mathbf{u} \\
 \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T &= \frac{Pm}{Pr} \nabla^2 T - 1 \\
 \frac{\partial B}{\partial t} &= \nabla \times (\mathbf{u} \times \mathbf{B}) + \nabla^2 \mathbf{B} \\
 \nabla \cdot \mathbf{u} &= 0, \quad \nabla \cdot \mathbf{B} = 0
 \end{align*}
 \]
 - Parameters: modified Rayleigh, Ekman, kinetic/magnetic Prandtl numbers
 \[
 Ra = \frac{g\alpha |\epsilon| D^5}{\nu \kappa \eta}, \quad E = \frac{\nu}{\Omega D^2}, \quad Pr = \frac{\nu}{\kappa}, \quad Pm = \frac{\nu}{\eta}
 \]
 \[
 \sim 16 \text{ Ra}_{\text{crit}} = 10^{-4} - 10^{-6} \quad \text{Ra}_{\text{crit}} = 1 \quad \frac{\nu}{\eta} = 1-5
 \]
 - Leeds spherical dynamo code: based on pseudo spectral method (e.g. Jones et al. 2011)
Slow MR waves in dynamo simulations

• Slow modes identified:
 – retrograde drifts commonly seen in dynamo simulations
 – their speeds accounted for by total phase speeds of wave and mean flow advection, \((\omega_{MR} + \omega_{adv})/m\), where
 \[
 \hat{\omega}_{MR} = -\frac{\hat{\omega}_M}{\hat{\omega}_R} = -\frac{m^3(r_o^2 - s^2)\bar{B}_\phi^2}{2\rho\mu_0\Omega s^4} \\
 \omega_{adv} = \bar{\zeta}m = \frac{\bar{U}_\phi}{s}m
 \]
 – 2D spectral analysis is crucial to distinguish each component

• Note: wave contribution depends on the radius s
 – wave \(\sim<\) advection at larger s

\[\text{at } E = 10^{-5}, Pm/Pr = 5, Ra/Ra_c = 8 & \Lambda \sim 22\]
(Hori, Jones & Teed, 2015)
Slow MR waves in dynamo simulations

- Slow modes identified:
 - retrograde drifts commonly seen in dynamo simulations
 - their speeds accounted for by **total phase speeds** of wave and mean flow advection, \((\omega_{MR} + \omega_{adv})/m\), where
 \[
 \frac{\hat{\omega}_{MR}}{\hat{\omega}_R} = -\frac{m^3 (r_o^2 - s^2) \langle B^2 \rangle}{2 \rho \mu_0 \Omega s^4}
 \]
 \[
 \omega_{adv} = \bar{\zeta} m = \langle \bar{U}_\phi \rangle / \bar{s} m
 \]
 - 2D spectral analysis is crucial to distinguish each component

- Note: wave contribution depends on the radius \(s\)
 - wave \(\sim<\) advection at larger \(s\)
Exploring more cases

- MR waves were found in models when torsional waves were found
 - generated magnetic fields of non-reversing dipole
 - for strong-field solutions ($\Lambda \sim 2$; $Pm \geq 5$ or $E \leq 10^{-5}$), good Taylorization (< 0.2), good geostrophy ($U'_c > 0.4$)

- Note: excited azimuthal wave-numbers m vary
 - chosen by the convective instability
 - dependent on E, Ra, Λ, etc

\[E = 5 \times 10^{-6}, Pm = 2, Ra/Ra_c = 16 \& \Lambda \sim 6 \]

\[E = 10^{-4}, Pm = 5, Ra/Ra_c = 8 \& \Lambda \sim 22 \]
Nonlinearity on waveforms?

The observed waves illustrate

- no wave packets
- isolated, sharp waveforms
 - steepening
 - shifted to positive

- reminiscent of cnoidal/solitary waves in weakly nonlinear, dispersive waves (e.g. Whitham 1974)
 - cf. (nonmag) solitary Rossby (e.g. Redekkop 1977, Yamagata 1982)

Evolution of amplitude $<u_s'>$ at $s=0.5r_o$
(Hori, Teed & Jones 2017)
The role of nonlinear Lorentz force

- Coriolis and Lorentz terms are dominant in the axial vorticity eq.
 - Reynolds term remains minor

- The Lorentz term Ξ_L can be expanded, in terms of the mean and fluctuating parts, as
 $$\Xi_L = \frac{P_m}{E} \left[\langle \mathbf{B} \cdot \nabla j'_z \rangle + \langle b' \cdot \nabla j'_z \rangle + \text{(other terms)} \right]$$
 - first term for the restoring force
 - second term for the leading nonlinear part

- The sum of the dominant restoring and nonlinear terms reproduces steepened shapes
Toroidal field strength within the Earth’s core

• The dispersion relation tells us about waves riding on mean flow advection

\[\hat{\omega}_{M\beta} = \omega - \omega_{\text{adv}} = -\frac{m^3(r_o^2 - s^2)\langle B^2 \rangle}{2\rho \mu_0 \Omega s^4} \]

– a geomagnetic drift speed of 0.56 °/yr at 40° S (Finlay & Jackson 2003)

– suppose a mean flow of 0.24 °/yr
 (Pais et al. 2015)

– Given m=5, this implies a z-mean toroidal field \(B_\phi \sim 12 \text{ mT} \) at s ~ 0.8r_o
 • equivalent to, or stronger than, the poloidal field \(B_s \geq 3 \text{ mT} \) (Gillet et al. 2010)

– constrains the dynamo mechanism?
 • e.g. \(\alpha^2 \)-type or \(\alpha\omega \) -type
 • stronger poloidal fields in dynamo simulations

(Hori, Jones & Teed, 2015)
In thin, stably stratified layers

- A stable layer at the top of the Earth’s core
 - SW models applied by poloidal field (Braginsky 1984, 1999)

- Solar tachocline at the bottom of the convection zone
 - SW models applied by toroidal field (Gilman 2000; Zaqarashvili et al. 2007)
 - ~3 m/s westward drifts and eastward wavetrains? (McIntosh et al. 2017)

Coronal brightpoints in Jan 2012 & at around 15° N / 22° S (McIntosh et al. 2017)
e.g. equatorial waves (cartesian)

- \(\beta \)-plane shallow water models applied by an azimuthal field

\[
\begin{align*}
\frac{\partial u_x}{\partial t} - fu_y & = \frac{B_x}{4\pi \rho} \frac{\partial b_x}{\partial x} - g \frac{\partial h}{\partial x}, \\
\frac{\partial b_x}{\partial t} & = B_x \frac{\partial u_x}{\partial x}, \\
\frac{\partial u_y}{\partial t} + fu_x & = \frac{B_x}{4\pi \rho} \frac{\partial b_y}{\partial x} - g \frac{\partial h}{\partial y}, \\
\frac{\partial h}{\partial t} + H_0 \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} \right) & = 0,
\end{align*}
\]

- when \(f \sim \beta y \),

\[
\frac{d^2 u_y}{dy^2} + \left[\frac{\omega^2}{C_0^2} - k_x^2 \left(1 + \frac{v_A^2}{C_0^2} \right) - \frac{k_x \beta}{\omega (1 - k_x v_A^2 / \omega)^2} - \frac{\beta^2}{C_0^2 (1 - k_x v_A^2 / \omega) y^2} \right] u_y = 0
\]

- cf. nonmagnetic case (e.g. Matsuno 1966):
 - a Schroedinger eq.
 - oscillatory for \(|y| < y_c \), i.e. equatorially trapped waves

- In the presence of magnetic field
 - nonzero \(V_A \) increases \(y_c \), i.e. releasing the trapped waves
 - large \(V_A \) gives rise to a Bessel eq.
In spherical shells

- Nonaxisymmetric MAC waves classified:
 - inertio-gravity
 - Rossby
 - Kelvin

- Rossby: for eq. symmetric $B\phi = B_0 \sin \theta$
 (Marquez-Artavia et al., 2017)
 - fast modes
 - goes westward
 - in the limit $V_M^2/V_c^2 \ll 1$, $\omega = -\frac{2\Omega_0 m}{n(n+1)}$
 - slow modes
 - goes eastward
 - in the limit $V_M^2/V_c^2 \ll 1$, $\omega = \frac{m v_a^2}{2\Omega_0 R_0^2} (n(n+1) - 2)$.
 - slowly westward for $n=m=1$
 - even polar trapped at large V_M^2/V_c^2
 - become unstable at large V_M^2/V_c^2

Eigenfunctions of fast / slow MR waves
for $m=1$, $\alpha (\sim V_M^2/V_c^2) = 0.1$, $\epsilon^{-1} (\sim V_A^2/V_c^2) = 0.01$
Summary

• Geo-/Jovian dynamo simulations are supporting the excitation of magnetic Rossby waves for incompressible/anelastic fluids
 – crests/troughs going retrogradely on timescales of $O(10^{1-2} \text{ yrs})$ in the Earth’s core, about mean zonal flows
 – excited when torsional Alfvén waves were excited
 • for strong-field dynamos ($Pm \geq 5$ or $E \leq 10^{-4}$; $\Lambda \gtrsim 2$)
 – the speeds accounted for by the linear theory, but their waveforms steepened, likely due to nonlinear Lorentz terms
 – their speeds potentially revealing the strength of the ‘hidden’ toroidal field
 – induced by topography but also by compressibility
Thank you
QG vs. non-QG modes

- In spheres
 - e.g. for Malkus field (1967)
 \[B_\phi = B_0 \sin \phi \]
 - the solution, \(P = P_n^m(\mu) P_n^m(\mu) \)
 - equatorially trapped for small \(n \)
 - even \((n-m)\): eq. symmetric (QG) modes
 - goes retrograde & faster (\(\approx -\omega_M^2/\omega_\beta \))
 - odd \((n-m)\): eq. anti-symmetric modes
 - goes prograde & slower (\(\approx +\omega_M^2/\omega_\iota \))

- cf. MC waves in simple plane layers
 - slow modes has no preference in propagation direction (\(\approx \pm \omega_M^2/\omega_C \))
 - The geometrical effect splits the modes into a faster & slower ones

Eigenfunctions for Malkus field (after Malkus 1967)